If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15+x^2+8x=0
a = 1; b = 8; c = +15;
Δ = b2-4ac
Δ = 82-4·1·15
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2}{2*1}=\frac{-6}{2} =-3 $
| 7k+1=57 | | 4x+2(3x–7)=22x–65 | | 6b-3=-21 | | 21+29a=28+22a | | x+(.055x)=40 | | 5x-40=2x+50 | | (2x-3)2=3x | | 3/2x-9-2x+2=1 | | x^2+15x+21=0 | | 6x-3=(2/3x)3x | | 5-5=x5+5 | | 51/4+m=71/2 | | 3.5=13.6+(-3.4c)+1.7c | | 3(a-2)+4(2a+3)=39 | | 7y+9=66 | | (3x-1)2=5x+4 | | 7y+13=118 | | 6x-12(6x-24)=-30x-42 | | 180/70=x/20 | | 3x-4x-2x=-3x | | 6x-12(6x-24)=-30-42 | | k-23=153 | | (x5)(x-4)=11 | | X/3+16=2x-4 | | 2/4+3=4-x/2 | | 8(x+1)+1=73 | | 50+15x=125 | | 1y+5=1 | | 126=2w^2-36w | | 0.5x-4=17 | | 15+50b=125 | | 4,9x^2=0 |